

Python Scripts
Manual

chat2desk.com

2

Changelog

21.04.2022

New API description (now in Postman).

15.12.2021

Rate limit is applied to send_message command.

11.02.2021

moderate_message command is depreciated.

22.12.2020

2 new script events:

• delete_tag_from_request

• add_tag_to_request

Earlier

Earlier changelog is not provided.

3

PYTHON SCRIPTS MANUAL 1

Changelog 2

Intro 4

Typical use cases 4

How to start 4

Events that trigger the script 6
New message received 6
Before sending message 7
Before closing dialog 7
After closing dialog 7
Every 60 seconds (auto checking) 7
After successful QR code recognition 8
A call from external system 8
Chatbot didn't trigger on incoming message 8
Chat transfered from one operator to another 8
Request from new client 8
Client info changed 9
Phone number requested 9
Tag assigned to request 9
Tag deleted from request 9

Script commands 9
send_message 9
send_question 10
get_client_info 10
get_operators 10
get_client_dialogs 11
get_online_operators 11
get_questions 11
get_last_question 11
get_unanswered_dialogs 11
get_new_messages 12
transfer_dialog 12
transfer_message 12
transfer_message_to_group 12
get_operators_groups 13
get_operator_group_ids 13
get_company_info 13
get_last_message_id 13
send_template 13
get_menu_items 13
send_menu_item 14

Script examples 14
“Send WhatsApp/Viber visit card after client’s phone call” 14
“Don’t disturb operators while a client uses self-service menu” 18

4

Intro
Python scripts can be used to add custom logic to messages flow inside
your chat center. Scripts are stored on our server and can be edited by you
online.

See our commercial scripts list here: in English, in Russian.

Apart script commands, you can use our API (see API manual).

Typical use cases
Here are some examples of what can be done with the scripts. At the end
of this document there are examples of actual scripts.

• Dialogs routing

Assign dialogs with a client to your operators based on phrases, cus-
tomer’s tags, current time, operators’ busyness, etc.

• Check the delay of service actions

Rearrange chats that were delayed by operators’ fault to other online
operators or supervisors.

• Send info to CRM

Send client and dialog info to CRM system via CRM API.

• Assign tags to client and requests

• Upon tag assignment different scenarios in these scripts or Sales Tun-
nels can be started.

A request is a set of messages within a dialog with a client. As a rule, request starts
with first client message and finishes when the dialog is closed. When the client
continues to text in a closed dialog, the dialog is opened and a new request starts.

How to start
To start using scripts ask administration to turn this feature on for you. This
is paid feature.

1. As admin go to Settings > Scripts.

https://chat2desk.com/en/scripts
https://chat2desk.com/skriptyi
https://documenter.getpostman.com/view/8899980/UVC8BRBo#intro

5

2. Make sure to turn on script logging to receive script error messages:
go to the bottom of the Scripts section and find Logging into your mes-
senger section. You must have your client id to receive the logs into your
messenger.

To get your client id:

• Turn on Incoming message event on the top of Settings > Scripts
section. Make sure there’s this code in the script’s new_message_han-
dler. It should be there by default. If not, copy-paste it.

class Handler:
def new_message_handler(self, input_data, c2d):
c2d.send_message(input_data['client']['id'], "This is client id: " + str(in-
put_data['client']['id']) + ".\n\nTo turn off this message go to Settings/Script
and turn off 'Incoming messages' option.", "system")

This script sends client id as system message to every chat with an in-
coming message. Send a message to any messenger connected to your
Chat2Desk account.

• Check the chat with yourself in All chats section. There will be sys-
tem message like this:

3. Put this client id in Logging into your messenger section to receive script

debug messages.

4. Check events that you want to trigger your script.

5. Modify the script: edit event handlers that correspond to the events that
you’ve checked above.

6. Click Save.

7. Test your script with test input data:

• In Test input data check the input data and click an event you want to
test at the top of this section.

• Click Run on test input_data to test your script.

• See output info in Output field.

6

Note. You can use script to manage chat assignment between operators, it is ad-
vised to turn off all chat assignment options in Settings > General > Self-service
menu and Chatbots to avoid chat arrangement conflicts.

Inside Python scripts feel free to use our API commands like this:

results = requests.put('https://api.chat2desk.com/v1/dialogs/'+str(did), params =
{'state':'closed', ‘operator_id':5000}, headers={‘Authorization': api_token })

Events that trigger the script
There are 14 events. You can turn these events on and off in Settings >
Scripts.

New message received
new_message_handler

Occurs after a new message is received by your chat center. Such data
comes inside input_data:

{

"message": {

"id": 111,

"is_menu": 1010,

"dialogID": 12,

"operatorID": 121,

"text": "message",

"transport": "whatsapp",

"photo": “https://site.com/images/users/client/48-5741232.jpg",

"video": URL,

"audio": URL,

"pdf": URL,

"coordinates": "55.32165 55.43401"

},

"client": {

"id": 1112,

"phone": "375447697415",

https://documenter.getpostman.com/view/8899980/UVC8BRBo#intro

7

"name": "John Connor",

"assigned_name": "The one"

},

"channel": {

"id": 1112,

"phone": "13757777777",

"name": "first channel"

}

}

This event happens before auto answer message and self-service menu
message. If you want to block them, return 'not send menu':

def new_message_handler(self, input_data, c2d):

…

return('not send menu')

Before sending message
before_sending_message_handler

Occurs when an operator sends a message, just before the message is
sent.

Before closing dialog
before_closing_dialog_handler

Occurs when a dialog is closed (both manually and automatically), just be-
fore it is actually closed.

After closing dialog
after_closing_dialog_handler

Occurs after a dialog is closed (both manually and automatically).

Every 60 seconds (auto checking)
auto_checking_handler

8

This event occurs every 60 seconds. Such data comes inside input_data:

"time": current time

After successful QR code recognition
qr_code_result_handler

Occurs when a QR code in incoming message was recognized. Option to
recognize QR codes in incoming messages should be enabled for your
company first — contact us.

A call from external system
manually_handler

Your company has a special URL (web hook), that can be called from exter-
nal services. Any info can be passed to this URL in JSON format using GET
or POST. When this URL is called, manually_handler is executed with the info
passed via input_data. Use this event to integrate our scripts with events in
external services like telephony and CRM.

See your URL in Settings > Script > Web hook call from external service.

Chatbot didn't trigger on incoming message
chat_bot_not_triggered_handler

Occurs when an incoming message came and your chatbot (see Settings >
Chatbot) didn’t trigger.

Chat transfered from one operator to another
dialog_transfer_handler

Occurs when a chat is transferred from one operator to another. Works on
the web site only.

Request from new client
new_request_handlers

Occurs when a new request is started. Do not confuse a request with a
message.

mailto:support@chat2desk.com

9

Client info changed
client_updated_handler

Occurs when a client info card is closed using Ok button on the site. This
event doesn’t happen on client tags assignment.

Phone number requested
request_phone_handler

Occurs when an operator clicks Request phone number button in Chats sec-
tion. You can send Request phone through your own script. It can be turned
on for Facebook, Viber public and Telegram transports. This option should
be enabled for your company first — contact us.

Tag assigned to request
add_tag_to_request_handler

Occurs when a tag is added to request manually by an operator, using self-
service menu or using a chatbot.

Tag deleted from request
delete_tag_from_request_handler

Occurs when tag is deleted from request manually by an operator, using
self-service menu or using chatbot.

Script commands
Here’s the list of Chat2Desk Python scripts commands.

send_message
Sends text message to a client.

c2d.send_message(client_id, text, type, file, channel_id)

This command is restricted by a rate limit: the system allows to send
no more than 15 messages per second. If the limit is exceeded, the
following error will be returned: “429 Too many requests”.

mailto:support@chat2desk.com

10

Parameters:

client_id is an id of a client to whom you want to send a message (int). See
above how to get client id of yourself for tests.

text is a text to send (string).

type (optional) is a message type. Possible values: to_client (default), autore-
ply or system. Use autoreply to send an automatic reply without assigning
chat to any operator. Use system to send system message to chat with a cli-
ent without actually sending it to the client.

file (optional) is a direct URL to picture or PDF file.

channel_id (optional) is an id of a channel if the client has dialogs in more
than one. If omitted, last client message channel will be used.

send_question
Sends self-service menu item to a client. Menu is created on the site in Set-
tings > Self-service menu section.

c2d.send_question(client_id, question_id)

Parameter:

question_id — as shown in Settings > Self-service menu section (integer).

get_client_info
Returns a client info: name, assigned name, comment, timestamp of the
first and the last message, phone number or id, country (by the phone
number), region (by the phone number), last transport used, channel, ava-
tar and more.

c2d.get_client_info(client_id)

get_operators
Returns a list of all your operators accounts in the system: first and last
name, number of open dialogs, timestamp of last visit, login (e-mail), phone,
role, online status, offline status and more.

c2d.get_operators()

11

get_client_dialogs
Returns a client’s current dialog info. Remember, that if a dialog of a client is
in New chats section, the client’s message doesn’t have an operator’s and
dialog’s ids until the dialog is assigned to any operator.

c2d.get_client_dialogs(client_id)

Also, this command helps to determine the client’s last operator to assign
the dialog to this operator that last served this client.

get_online_operators
Returns a list of online operators as well as the same info as for get_opera-
tors.

c2d.get_online_operators(true or false)

Parameter:

Only with new chats available (True or False) — if False or omitted, a list of all
online operators is returned. If True then only online operators with New
chats section available to them are returned. See Settings > Security &
Access rights section.

get_questions
Returns an array of self-service menu items requested by a client during a
specified timespan. This command is useful for retrieving the client’s con-
text in self-service menu hierarchy.

c2d.get_questions(client_id, '10-10-2021', '10-12-2022')

get_last_question
Returns last menu item (id, text and image) sent to a client — same info as
for get_questions.

c2d.get_last_question(client_id)

get_unanswered_dialogs
Returns a list of dialogs that have unanswered message from a client and
respective client list. Useful to transfer “stuck” dialogs to free operator.

12

c2d.get_unanswered_dialogs(limit)

Parameter:

limit (sec) — time period after which a dialog is considered as unanswered.

get_new_messages
Returns a list of new messages (new chats). It can be used to check new
chats and assign them to operators.

c2d.get_new_messages()

transfer_dialog
Transfers (arranges) a dialog to an operator. This command should be used
when a dialog already has one operator and you want to transfer it to an-
other.

c2d.transfer_dialog(dialog_id, operator_id, ‘Take this chat please’)

If the dialog does not have an operator (it is in New chats section), you
have to use transfer_message command.

transfer_message
Transfers (arranges) a new dialog with specified message to an operator.
This command should be used when a dialog doesn’t have an operator (in
New chats section).

c2d.transfer_message(message_id, operator_id, ‘Take this chat please’)

transfer_message_to_group
Transfers (arranges) a dialog with specified message to a group of opera-
tors. The operator is chosen as set up by admin in Settings > Operator >
Groups on the web site.

c2d.transfer_message_to_group(message_id, group_id)

To get operator groups ids use get_operators_groups().

13

get_operators_groups
Returns a list of operator groups. To get a list of groups of one specified op-
erator use get_operator_group_ids().

c2d.get_operators_groups()

get_operator_group_ids
Returns a list of one specified operator groups ids.

c2d.get_operator_group_ids(operator_id)

get_company_info
Returns current company info such as: name, work schedule, current work-
mode (online or offline) and more.

c2d.get_company_info()

get_last_message_id
Returns id of last message in a dialog with a client.

c2d.get_last_message_id(dialog_id, message type, timespan)

Parameter:

message type is a type of a message: 1 — from client, 2 — from operator, 3
— autoreply, 4 — system message.

timespan is a timespan in seconds to check for the last message. It can be
used to exclude old dialogs.

send_template
Sends specified template to a client. See Settings > Templates section.

c2d.send_template(‘abc’, client id)

Parameter:

‘abc’ — template’s quick command.

get_menu_items
Returns a list of self-service menu items.

14

c2d.get_menu_items(channel id, menu items level)

Parameters:

channel id (optional), see channels GET API function or Settings > Accounts
section. If omitted, menu items from all channels will be returned.

menu items level (optional). First (root) level is 1 (menu item level starts from
1, unlike API). If omitted, all menu item levels will be returned.

send_menu_item
Sends self-service menu item to a client.

c2d.send_menu_item(client id, menu item id)

Menu item level starts from 1 (unlike API).

Parameters:

client id, obtain it from input_data.

menu item id (optional) if omitted, root menu from last user message chan-
nel will be sent.

Script examples
Below are examples of ready-made scripts. Please contact us If you want to
improve your Chat2Desk experience or change the way some functions
work. We will create a script for you. See more information about scripts on
our website.

“Send WhatsApp/Viber visit card after client’s phone
call”
When a client performs a voice call, the telephony system should call the
URL (web hook), specified for your company — see manually_handler above
and pass a calling party phone number and, optionally, calling event in JSON
format.

Here’s a script which checks that this client has already contacted your chat
center and if not, creates this client. Then, the script sends a message (visit
card) to this client. The message considers current time.

https://documenter.getpostman.com/view/8899980/UVC8BRBo#intro
https://t.me/chat2deskbot
https://chat2desk.com/en/scripts

15

#! /usr/bin/env python

-*- coding: utf-8 -*-

import re, sys, time, json

from datetime import datetime

from requests import get, put, post, delete

This script sends text into WhatsApp when called via POST request from external system.
The request should be made to URL specified above in “Web hook call from external ser-
vice (manually_hander)” (it should be turned on). Phone field in the request is obligatory. If
a name is also specified, the new chat with client will be named with this name. Phone
should consist only digits. To avoid ban for spam, new clients contacts per day is restricted
using limitHere variable. For this script to work Chat2Desk’s “Write first” feature should be
on

class Handler:

reload(sys)

sys.setdefaultencoding('UTF8')

def new_message_handler(self, input_data, c2d):

return

def manually_handler(self, input_data, c2d):

#print input_data

kind = 'to_client'

name=''

3 different texts for work time, offwork time and weekend days

msg=['Hi (work time) ',\

'Hi (offwork time) ',\

'Hi (weekend)']

chat_state = True # Close or not the chat after sending message

today=datetime.today()

if today.weekday() in (5,6):

number = 2

else:

16

number = 0 if today.hour in range(9,19) else 1 # working hours

text=msg[number]

if 'phone' in input_data and input_data['phone']:

phone = str(input_data['phone'])

else:

return 'No phone'

if 'name' in input_data: name = input_data['name']

if phone[0] == '+': phone=phone[1:] # Removing +

api_headers['Authorization']=c2d.token

data=get(api_url % 'clients?phone='+phone,headers=api_headers)

if not data: return ''

client=json.loads(data.text)

if client['meta']['total']==0:

if not counter_control(): return 'Too many new clients for today (not sent)'

post(api_url % 'clients?transport=whatsapp&phone='+phone,headers=api_headers)

data=get(api_url % 'clients?phone='+phone,headers=api_headers)

if not data: return ''

client=json.loads(data.text)

if not client['data'] or len(client['data'])==0:

return ''

if name != '':

put(api_url % 'clients/' + str(client['data'][0]['id']),headers=api_headers,params={"nick-
name":name}) # Renaming

return sendText(c2d, client['data'][0]['id'],text,kind,chat_state)

def counter_control():

fldHere='extra_comment_2'

17

limitHere=500 # limit of а new clients per day

data=get(api_url % 'clients?limit=1',headers=api_headers)

if not data: return False

id=json.loads(data.text)['data'][0]['id']

content=json.loads(data.text)['data'][0][fldHere]

cnt=1;

curDay=int(time.strftime("%d"))

if content:

value=json.loads(content)

if curDay==int(value['date']):

if int(value["count"])>=limitHere: return False

else: cnt=int(value["count"])+1

data=json.dumps({"date":curDay,"count":cnt})

data={"extra_comment_2": data}

put(api_url % 'clients/%s' % str(id),headers=api_headers,data=data)

return True

Send a message

def sendText(c2d,clientID, text, kind='autoreply', close_chat=True):

info = c2d.send_message(str(clientID), text, kind)

if close_chat and "message_id" in info:

headers={'Authorization':c2d.token}

mn=str(info["message_id"])

obj=get(api_url %'messages/'+mn,headers=headers).json()

if not obj or not obj["data"] or not obj["data"]["dialog_id"]: return 'Cannot close dialog'

try:

dg = str(obj["data"]["dialog_id"])

except:

return 'Cannot close dialog'

oID = obj["data"]["operator_id"]

put(api_url % 'dialogs/'+dg,headers=headers,params={"operator_id":oID, "state":"closed"})

return ''

18

Common functions

api_headers={'Authorization':''}

api_url='https://api.chat2desk.com/v1/%s'

“Don’t disturb operators while a client uses self-service
menu”
Do not notify the operators when a client uses self-service menu. Once the
client writes something else — arrange the dialog to least busy online oper-
ator. Done by arranging a dialog to dumb operator whose last name is Bot.

def new_message_handler(self, input_data, c2d):

operators - list of all operators

operators = c2d.get_operators()

bot_operator = None

find operator with last_name = 'bot'

for operator in operators:

if operator['last_name'] == 'bot':

bot_operator = operator

if bot operator was found, continue logic

if bot_operator:

if message is new, transfer message to bot

if not input_data['message']['dialogID']:

c2d.transfer_message(input_data['message']['id'], bot_operator['id'])

if message belongs to bot operator, check: client message is menu item (or not)

else:

if int(input_data['message']['operatorID']) == int(bot_operator['id']):

if message is not menu item, transfer to free online operator

if not self.is_menu_items(input_data['message']['text']):

if we found free online operator, transfer message to him

free_operator = self.find_free_online_operator(c2d)

if free_operator:

c2d.transfer_message(input_data['message']['id'], free_operator['id'])

19

If message is menu item, return True

Note! We’ve added new field in message data: is_menu. If it’s Null, then this isn’t menu
item. Otherwise it is equal to menu item’s command. This old example doesn’t use this new
field.

def is_menu_items(self, message):

list of all menu items

menu_items = ['0', '1', '2', '3', '00', 'End']

compare client message with menu items

for item in menu_items:

if item == message:

return True

return False

Return free operator or None

def find_free_online_operator(self, c2d):

operator - list of online operators

operators = c2d.get_online_operators()

if all operators are offline, skip logic

if len(operators) > 0:

free_operator = operators[0]

find operator with minimum number of opened dialogs

for operator in operators:

if operator['opened_dialogs'] < free_operator['opened_dialogs']:

free_operator = operator

return free_operator

else:

return None

	Python Scripts Manual
	Changelog
	21.04.2022
	15.12.2021
	11.02.2021
	22.12.2020
	Earlier

	Intro
	Typical use cases
	How to start
	Events that trigger the script
	New message received
	Before sending message
	Before closing dialog
	After closing dialog
	Every 60 seconds (auto checking)
	After successful QR code recognition
	A call from external system
	Chatbot didn't trigger on incoming message
	Chat transfered from one operator to another
	Request from new client
	Client info changed
	Phone number requested
	Tag assigned to request
	Tag deleted from request

	Script commands
	send_message
	send_question
	get_client_info
	get_operators
	get_client_dialogs
	get_online_operators
	get_questions
	get_last_question
	get_unanswered_dialogs
	get_new_messages
	transfer_dialog
	transfer_message
	transfer_message_to_group
	get_operators_groups
	get_operator_group_ids
	get_company_info
	get_last_message_id
	send_template
	get_menu_items
	send_menu_item

	Script examples
	“Send WhatsApp/Viber visit card after client’s phone call”
	“Don’t disturb operators while a client uses self-service menu”

